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The evaluation of complex Airy functions is required in the approximation of certain 
second-order linear ditferential equations arising in the treatment of multiple turning- 
point and energy curve-crossing problems in quantum mechanics. Pairs of numerically 
linearly independent solutions throughout the z-plane can be constructed from the funda- 
mental solutions to the complex Airy equation, Ai( Bi(z), and AK. eePai?. Integral 
representations for these complex functions and their derivatives are given, and being of 
the Stieltjes type, the integrals are evaluated using the generalized Gaussian quadrature 
method of Shohat and Tamarkin as implemented by Gordon. These integral representa- 
tions, employed together with the Taylor series for small z and the appropriate connection 
formulas, allow the creation of an accurate and efficient algorithm to evaluate the complex 
functions over the entire z-plane. The algorithm is presented in detail at the end of this 
article. 

1. INTRODUCTION 

Recently interest in Airy functions of a complex argument has arisen in the quantum 
mechanical study of physical problems with complex transition points which occur 
in the calculation of wave functions when the energy curves have an avoided crossing 
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[3, 151, in scattering problems involving complex optical potentials, and in connection 
with the computation of uniform asymptotic series for Weber’s parabolic cylinder 
functions [12] which are needed in the integration of the radial Schroedinger equation 
for a general piecewise quadratic potential we11 or barrier 17, $1. 

Although the solutions to the complex Airy equation have been well studied by 
Olver [ll], no convenient algorithm for their calculation exists. Algorithms for the 
functions with real arguments are available, but their modification to handle complex 
arguments is not a straightforward task [5, 141. The power series expansions can be 
used only in a small region near the origin, and the asymptotic formulas converge too 
slowly or not at all for moderate values of z [l]. The existing tabies by Miller [S] 
and Woodward [17] are too limited in their range of arguments and are difficult to 
implement in computer calculations involved in the above-mentioned physical 
processes. 

We present in this paper an algorithm for the evaluation of the linearly independent 
solutions to the complex Airy equation 

The sets (Ai( B(z)) and (Ai(z e*““i/3 )}, and their derivatives, are computed from 
Stieltjes-type integral representations. In section 2, the behavior of the functions 
in the complex plane is examined in order to determine the proper choice for standard 
solutions (i.e. a pair of numerically linearly independent solutions). In section 3, 
the integral representations for Ai( E(z), and Ai(z e-CZXilB) are developed and 
subsequently evaluated in section 4 using the generalized Gaussian techniques of 
Shohat and Tamarkin [16] as implemented by Gordon [6]. The integral representa- 
tions employed together with well-known connecting formulas allow the creation of 
an accurate and efficient algorithm to compute the complex Airy functions over the 
entire z-plane which is discussed in detail in the last section. 

2. BEHAVIOR OF THE AIRY FUNCTIONS IN THE COMPLEX PLANE 

The discussion here is by no means exhaustive, but rather is intended only to set 
forth those properties of the Airy functions that are essential in calculating the 
appropriate fundamental set of solutions in the complex plane. _A more complete 
study of their properties, particularly their asymptotic behavior, is given by Olver 
[al, 131. 

For computations involved in physical problems with real-valued functions and 
functionals, such as the Wronskian, the set of linearly independent solutions normally 
chosen is Ai and B(z). These functions are real when s is real (Z = X) and they 
satisfy Miller’s criteria for numerically satisfactory solutions of second-order differen- 
tial equations [9]: i.e. when the coefficient of the real Airy equation is greater than 
zero (X > 0), the solutions are either exponentiahy decaying or growing functions as 
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can be seen from the leading term in the asymptotic series expansion for the regular 
and irregular solutions 

Ai N +,-1P,--llQ-~ for / arg 2 I < 77 (2.1) 

Bi(z) N ,-1Pz-1/4& for / arg 2 I < 7r/3 (2.2) 

where 5 = 2z3i2/3. In the purely oscillatory region (x < 0), the solutions have an 
asymptotic phase difference of 7712 and the same asymptotic modulus 

Ai = ~-l/~x-l/~ sin([ + a/4) + 0(x-7/4) (2.3) 

Bi(-x) = w-ll”x-l~” cosg + 7r/4) + 0(x-‘i”). (2.4) 

In studying the behavior of the Airy functions for complex arguments, we can 
restrict the analysis to z in the upper-half plane. For conjugate values of z, the func- 
tions and their derivatives take on conjugate values: 

and 
Ai = Ai* dAi(z) dAi*(z*) ___ -- 

dz dZiz” 

Bi(z) = Bi*(z*) dBi(z) dBi*(z*) _I_ = dz dz” . 

(2.5) 

In Fig. 1 the magnitudes of Ai and Bi(z) are plotted as functions of the polar 
,coordinates (r. 0) locating z in the upper-half plane, and in Fig. 2 the phases of Ai 
and Bi(z) for z along the semi-circle Y = 2 are given. The phases of the complex 
functions differ by about ninety degrees for z in the sector 7~/3 < 6 < rr for all values 
of r. Upon comparing the three-dimensional plots of Ai and Bi(z), one observes 
that in this region of the complex plane the functions become indistinguishable 
numerically, 

Ai -, FiBi 

Ai’ w FiBi’ 
(I z / large, ~r/3 < I arg 2 / < r). 

,Or to put this another way, in the computation of the Wronskian W{Ai(z)} there is 
severe cancellation; indeed for sufficiently large values of 1 z 1 all significant figures are 
lost. 

In order to maintain ‘numerically two linearly independent solutions to the differ- 
ential equation in this sector, another pair of functions must be selected. In the upper- 
half of the z-plane, the appropriate choice is {Ai( Ai(z e-Zri/3)}. In the region 
7~13 -=c 19 < n-, Ai(z e--‘7n7;5) vanishes exponentiahy whereas Ai grows exponentially 
(see Figure 1) such that the Wronskian computed for this fundamental pair remains 
constant. In the sector 1 arg z / < 7r/3, the function 2 e--Bi/6 Ai(z e-2rrii3) behaves 
asymptotically like Bi(z). In the lower-half plane the appropriate pair of solutions 
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FIG. 1, Three-dimensional plots of the magnitudes of the complex Airy functions, j di(z)l and 
! Bi(z)j, as function of the polar coordinates (Y, 0) of z. (The values for B = 180” have been enlarged 
to illustrate the oscillatory behavior). 

FlG. 2. Phases of the complex Airy functions di(z) and B(z) as a function of the polar coordinate 
0, f’ = 2, 
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{Ai( Ai(z e+2wi/3 )}. Only along the real axis and in the sector 1 arg z 1 < n/3, does 
(AZ(Z), I%(z)) constitute a pair of numerically linearly independent solutions to the 
complex Airy equation. 

Actually, knowledge of only the solution A@) suffices to generate a complete table 
of Airy functions due to the existence of a series of useful connection formulas [l, 131: 

Aj(z) = emi/3Aj(ze-2”ii3) + e-~“PAj(z+“/3) (2.6) 

Bj(z) z e~fPAj(z@iP) + e-~iPAj(z@~iP) (2.7) 
Sj’(z) = e5~i/6Ai’(ze2ni/3) + e-5ni/6Ai’(Ze-2,,i/3) (2.8? 

2e*nii6Ai(ze*2X”13) = [B(z) & iAi(z)] (2.9) 

We do not need a direct algorithm for the sector 271.13 -=c arg z < 41~13. As long as 
we can compute Ai for 0 < arg z ,( 2rr/3, and by conjugacy -21~13 < arg z < 0, 
the rest of the plane can be covered by the connection formulas. The evaluation of 
Ai from (2.6) in the remaining region is numerically stable, that is, no cancellation 
of exponentially large solutions to form an exponentially small solution occurs. 
Similarly, B&z) and its derivative can be recovered in a numerically stable way from 
formulas (2.7) and (2.8). 

3. INTEGRAL REPRESENTATIONS FOR COMPLEX AIRY FUNCTIONS 

For z real, Gordon [5] presented integral representations for AZ(&) whose 
evaluation by a Gaussian quadrature method required only a few terms (12 = 4). 
These integrals are also defined for complex z, and with the appropriate interpretation 
of the multivaluedness that arises in the extension to complex variables, they can be 
employed to compute the complex functions as well. 

The integral representation for Ai is derived from an expression for the modified 
Bessel function of the second kind K,(z) [4a], 

s 

m (xl12)-l e-zKv(x) dx = 7.re”K,(S) 

0 x+5 p/” cos(Jm) 

I ark2 5 I -c =, Re(v) < l/2. 

If we set v = l/3; 5 = 2z3J2/3 and substitute 
- 

&/3(X) = (3$3 Ai[(3x/2)“13] 

(3.1) can be solved for Ai( 

Aj(z) = k ,-1/2z-1/+2~3’313 Jm 1 +pgtf& 
0 , 

[ 
I z I > 0, I arg z I < $ or I arg 5 I 

(3.1) 

(3.0 

iT I (3.2) 
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PM = = 
-1/22-11/63--2/3X-2/3e--x~~[(3x/~)"~3]. (3.3) 

F(X) is a non-negative exponentially decreasing function, and it wifI be shown in 
Section 4 that since p(x) is a solution of a moment problem pli Eq. (3.2) can be asymp- 
totically represented by the series & &-l which is identical to the usual asymptotiqJ 
series in this sector [I] 

There exists no integral representation for B(z) analogous to the one for A(Z); 
expressions closely resembling it, however, can be derived utilizing relation (2.9) and 
Eq. (3.2). The resulting two expressions closely resembling it, however, can be derived 
utilizing relation (2.9) and Eq. (3.2). The resulting two expressions for B(z), which are 
denoted Bi+ and J?-(z) to indicate they have different argument restrictions, are 

Bi:(zj = ,-l~2z-1/4,2~~z/3 

s 

c4 p(x) dx 
5 1 _ 3x/2 z3e + iAiiz) 

I 

45? 
3 > arg z > 0, or 0 < arg 5 < 27r] 

Bj-@) == ,-l/2Z-1/2e2r3i'/3 p(x) dx 

1 - 3x12 z3i2 
iAi(Z) 

1 47r -__ 
3 

< arg z < 0, or --277 < arg 5 < O] (3.5) 

where the integral portiom are just 2e-Ti/6Ai(z ecZnii3) in (3.4) and 2 e”“iSAi(z ezisi13) if2 
(3.5). 4s the zeros of Ai are all real, these expressions can be employed to locate the 
zeros of B(z). 

Since the branch cut is along the positive real axis of the c-plane, neither B+(z) 
nor B-(z) is defined for z on the positive real axis. Thus one wouid like to examine the 
behaviour of these functions as 5 -+ x,, , where x0 is a point far from the origin. The 
evaluation of the real singular integrals (i.e., the integration variable is real) which 
have a simple pole on the path of integration is a well-studied problem in the treatment 
of Cauchy integrals in complex analysis. Since p(x) is analytic at the singularity and 
continuous everywhere along the path of integration except for an integrable singula- 
rity at the endpoint, we can employ the Plemelj formulas [2, lo] to determine rhe 
limiting value of the two Cauchy integrals as z approaches the rea? axis from above 
and below. 

For the purposes of our discussion, let L denote the integration path. It is sufficienr 
to require p(x) be continuous on II. and satisfy the Lipschitz condition 

I P(XI> - PWI < A 1 XI - ~5 P 

for all x1 on L in some neighborhood of 5 + x0 , where A and p are constants: and 
O<p<l. 
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The analyticity requirement on p(x) near 5 = x,, , allows us to deform the path of 
integration, and treat x as a complex variable. Then as 5 -+ x0 from above 

Bii(x) = ,-lPx-li4& p 
( [I 

i” p(x’) dx’ p(x’) d-x’ 
o 1 - x’/c + 1 s r, 1 _ xt/s + Wd (3.6) ) 

and as 5 + x0 from below 

Bi-(x) = T-l/zx-~~~e~ p 
( [I 

m p(x’) dx’ 
o i - x’/c + I s 

p(x’) dx’ 
r,, 1 _ x115 - i&-d (3.7) 1 

where r, and p,, are semi-circles, around the point x0 (see Figure 3), and the principal 
vaIue integral is defined 

*m 
P 

[J 0 
(3.8) 

L 

0 f Bi+k) -*.. 
.- 

x-co 
r, 

FIG. 3. Integration paths for B@(.xJ 

The contributions arising from semicircles I’, , I’,, are F i n p(5), and we can now 
carry out the limiting process to obtain 

p(Y) dx’ 
1 _ x,,5 - in&(<)) + i Ai 

(3.9) 

and 

B?(x) = 7~-~/~,~-1/~~c _ iAi(x)(l _ 3-12-17/4sxl/4). (3.10) 

The addition and subtraction of (3.9) and (3.10) lead to the Plemelj formulas 

p(i) dx’ 

1 - X’lS 
(3.11) 

BP(x) - B?(x) = 2i Ai + 237i<p(~) x-l14&. (3.12) 

Since the R.H.S. of (3.12) goes exponentially to zero, Bi(x) can be approximated [5] 
to any desired accuracy for large x by 

( I 
m Bi(x) = 1/2[Bi+(x) + Bi-(x)] = t+~x-l14e~ P 

0 
p(x’) dx’ ). 
1 - X1/5 (3.13) 
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A similar Cauchy integral problem must be solved in order to evaluate Ai by Ibe 
integral equation (3.2) for z along the rays arg z = &2rr/3, or equivalently arg 5 = +7r. 
An analogous limiting process, this time with -5, leads to the following principal 
value integral for Ai@, e*:2Ti/3) when x is large: 

As was to be expected, the R.H.S. is just the expression above for By, Eq. (3,33). 

4. GENERALIZED GMJSSIAN QUADRATURE APPROXIMATION 

The integrals appearing in Eqs. (3.2), (3.4) and (3.5) for .&(z) and BP(Z), respec- 
tively, can be evaluated straightforwardly by the generalized Gaussian quadrature 
method described below (61 [16]. With certain reservations, which will be discussed 
at the end of this section, the same quadrature approximation can be applied to the 
principal-value integrals in (3.14) and (3.13) for Ai(x e*ani.‘3) and B(X). 

initially let us consider the evaluation of Ai( Eq. (3.2) in the region j arg z j < 
2?-r/3, z f 0 where the denominator has no zero. We factor the integrand into the 
product of two functions p(x)+( x , ) such that P(X) is the non-negative exponentially 
decreasing function in Eq. (3.3) 

p(x) = ,-l/“2-11/133-~j3X-2;3e-~~4i[(3x/2)~!3j, (4. ! ,i 

and $(x) is the remaining portion l/i + X. Performing the factorization, the integral 
portion becomes 

Since the approximate quadrature formula corresponding to (4.2) 

is a well-studied problem, we shall only briefly summarize the theoretica treatment of 
Shohat and Tamarkin [16] and the applied techniques of Cordon [6]. p(x) is written pn 
the argument I(<, p) to emphasize that the quadrature weights I!:~ and abscissae x: are 
dependent on p(x) only. 

Shohat and Tamarkin’s development of the quadrature approximation is based 
on the following observations: p(x) is a solution to a Stieltjes moment problem 
whose moment btIL can be explicitly evaluated [4b], 

O= pk == I x”p(x) ifx k == 0, 1, 2;... 

= &3k + l/2)/54k kl r(k + l/2). (4.4) 



68 SCHULTEN, ANDERSON, AND GORDON 

Upon expanding the denominator of (4.2) in a geometric series and then integrating, 
we can develop an asymptotic series approximation to I([, p), Cf, prc-“-l which is 
in general divergent for all 6. 

From the inverse power series one can derive a continued fraction representation 
CtO for 45, P> 

(4.5) 

where the ai are determined from the ,ur . From the infinite continued fraction C(s), 
two subsequences of finite contracted fractions can be constructed: a subsequence of 
even approximants Ane(5) and a subsequence of odd approximants A,,O(l;). For each 
value of rz either A,O(LJ or A,“(<) is used to generate a set of {loi , xi}?=1 such that 

The algorithm to solve for the n weights and abscissae, as well as an expression for the 
remainder term when 5 is real and positive, has been developed by Gordon [6]. For 
any value of 1;, complex or real, not on (---co, 01, the sequences {A,&} and {Ano) will 
both converge as y1 --+ co to I@, 5). Furthermore, when 5 is on [O, co), A,“(c) and 
&O(c) form bounds for the integral 

An%3 < a, p> < 40(5). 
Substituting the expression for either A,” or A no for I([, p) provides a quadrature 

approximation to (3.2) 

(4.7) 

Since the weights and abscissae are entirely dependent on p(x), the same set of (wJ 
and {xi> can be used to approximate any integral of the form 

s m dx, 5) ~(4 dx 
0 

in which g(x, 1;) is finite for all x and integrable with respect to p(x). 
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This generalization allows us to immediately evaluate the integral in (3.4) 

Differentiation of (3.2) and (3.4) yields integral expressions for the derivatives in which 
the integrands still satisfy the above criteria. Consequently this is equivalent to 
obtaining quadrature approriimations for the derivative functions by differentiating 
the function approximants; for example, 

API the above approximants, (4.7), (4.S), and (4.9, converge to the exact functions 
as n --j co whenever < is in the range of validity of the particular integral representation 
and i 5 / > 0. 

In practice, the principal value integral for Ai(x e+2?rii3), Eq. (3.14) is approximated 
for x large by the same quadrature as Ai( Eq. (4.7); and similarly B(X) by just the 
quadrature portion of Eq. (4.8). This evaluation is justified by an examination of the 
behavior of P(X) and #(x), in this case C(X) = I/(X -- i i I), ! i I> 0, as well as the 
quadrature nodes and weights. 

Xear the origin P(X) goes to infinity like x-“j3 and vanishes exponentially for large x 
Consequently its main contribution to the integral occurs over a finite interval [O, 2J 

s cc p(x) dx < 2 x 10-4. 
2 

(Recall that the integral Jr P(X) dx has been normalized to 1.) Since P(X) is positive 
over the range of integration and decays like e--8z.+/6, the sign change in b(x), as x 
passes from / 5 j - E to / 5 / + E, has a self-cancelling effect in the evaluation of the 
principaI value integral. Furthermore, the quadrature nodes xi are clustered about the 
origin (xi > 0 for all i) and the %vi give the greatest weight to the nodes lying closest. 
to the origin. For I 5 / sufficiently greater than the largest node x1 , this distribution 
samples predominantly the portion of 4(x) well before the singularity. Unlike the 
complex integrals, no rigorous error bounds have been constructed for the approximate 
quadrature to the principal value integrals. In general, as the number of terms N 
in the quadrature approximation is increased, we must go to larger / 5 ! before 
applying the quadrature formulas. 

5. ALGORITHM AND DISXJSSION 

The conjugacy property of the Airy function Eq. (2.59 allows us to limit the dis- 
cussian of their evaluation to z in the upper-half plane. Using the connection formulas 
in Section 2, the approximate quadratures in Section 4, and the Taylor expansions 
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Z-plane 

AB or co 

I I I 
-10 -8 -6 -L -2 2 L 6. 8 10 X 

FIG. 4. Computing regions for evaluating Airy functions to Single Precision (UNIVAC 1108). 

given below, single and double precision algorithms to calculate the Airy functions 
Ai( B(z), and Ai(z e- +2ni/3) and their derivatives for complex values of z can be 
developed. Single precision, meaning 6-7 significant digits, values of the functions 
Ai and Bi(z) have been computed on an Univac 1108 system employing the two 
computational methods as depicted in Fig. 4. In the bounded regions about the 
origin, the label S denotes use of the power series [l] 

Ai = c&z) - c;g(z) 

wd = 43 CCL&) $- c,g(z>l 
(5.1) 

where c1 = Ai(0) = 3-2/3/r(2/3) and cp = --Ai’ = 3-l13/r(1/3), and 

f(z) =: f 3” (& &+ 
0 

with Pochhammer’s symbol (LZ)~ = r(a + k)/r(a). The G denotes direct use of the 
generalized Gaussian quadrature formulas, Eqs. (4.7) and (4.8), for the correct 
angle restriction, and C evaluation by the connection formulas (2.6) and (2.7). GA 
on the ray arg z = 2~13 and GB on the real positive axis refer to the Gaussian quadra- 
ture of the principal value integrals (3.14) and (3.13). The partial ellipse, within which 
only the power series are used, has its center at (-0.65, 0.92). The major and minor 
axes are 4.5 and 3.2, and the orientation angle is 17”. For z in those regions marked 
GA or Gs , the functions are computed by the quadrature formulae with a maximum 
of four terms. The nodes xi , weights ~7~ , and number of terms as a function of the 
magnitude of z for the single precision version are given in Tables I-IV. The center 
and radius of the area (G, , S,) are (1.65,-0.05) and 3.4. 

The elliptical boundary was chosen in order to satisfy the various restrictions 
imposed by the computational methods, particularly along the rays arg z = 0 and 
2~13. For example, although the series (5.1) have an infinite radius of convergence, the 
series for Ai becomes numerically unstable in the sector 1 arg z 1 < 7r/3 outside 
the region S,, . In that sector, Ai goes asymptotically to zero, and inaccuracies 
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TABLE I 

Number of Terms in Quadrature Formulas to Compute Airy Functions 
to Single Precision (UNIVAC 11 OS) 

z 

Izi > 11 

5 < iZ\ < Il” 

2.5 < I 2 J i 5” 

arg z 

2rr 
.< - 

3 
2n 

c -3- 
7r 

f- 3 

Ai 

2 term 

4 term 

4 term 

B(z) 

2 term 

4 term 

power series 

‘% These are approximate values. For the precise boundary see Fig. 4. 

TABLE II 

4-term Generalized Gaussian Integration for Airy Functions 

i Xi H’; 

1. 3.9198329554455091 4.7163903051511263(-05) 

2. 1.6915619004823504 4.99!4306432910959(-03) 

3. 5.0275532467263018(-01) 8.6169S46993840312(-02) 

4. 1.9247060562015692(-02) 9.087909584598! 102(-01) 

TABLE III 

2-term Generalized Gaussian Integration for Airy Functions 

i xi wi 

1. 1.0592469382112378 3.1927194042263958(-02) 

2. 3.6800601866153044(-02) 9.6807280595773604/-01) 

TABLE IV 

l-term Generalized Gaussian Integration for Airy Functions 

1. 0.069444444.. .I . . . I.0 
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.arise due to the round-off errors. Growth of the round-off errors is reduced by evaluat- 
ing the series term by term, Ai = Cr=, [c&,(z) - c2gn(z)], wheref,(z) and g,(z) are 
the nth terms in the expressions forf(z) and g(z). Prince [14] has shown for negative 
real values of z that the convergence can be extended further by rearranging the power 
series in Chebyshev polynomial expansions. In principle this technique could be 
applied for complex values of z to provide a smoother transition to the quadrature 
formulae. 

Along the ray arg z = 2rr/3, the integral representation for Ai( or rather the 
principal value integral for Ai(x e- Zai/3), is still evaluated by the quadrature (4.7). 
The quadrature approximation has a singularity at each node xi ; and therefore, as 
we discussed in Section 4, we can only use it when 1 5 1 = 1 2z”J2/3 / is greater than 
the largest node. For IZ = 4, we see from Table II that this restriction implies ! 5 ! > 
x, = 3.9, for z on or near the ray arg z = 2rrj3. Since Ai is an exponentially 
increasing function in the region ~12 < arg z ,< 2~13, we can accurately extend the 
use of its power series. 

One notes that the domains S,, and SB do not completely overlap. For z in the 
portion of S, near the real axis, we are faced with a problem analogous to the one 
above for Ai( Z; lies too close to the quadrature nodes to accurately use the quadra- 
ture approximation (4.8) for &f(z) and its principal value integral. 

Y t Z-Plane 

FIG. 5. Computing regions for evaluating Airy functions to Double Precision (IBM 360). 

More precise values, 11-14 significant digits, of the Airy functions can be obtained 
using complex double precision arithmetic on an IBM 360. The computing domains 
are shown in Fig. 5. The circle SAB is centered at (-0.90, 2.80) with a radius r,lB = 
4.97, and the circle S, is centered at (2.0, 0.0) with a radius rB = 5.53. The nodes, 
weights, and number of terms in the quadrature formulae are given in Tables V and VI. 
A maximum of 6 terms is now needed to generate the more precise values. The lower 
range of accuracy, 6 in the single precision and 11 in the double precision version, 
exists only along the boundaries of S,, and S, . The transition to higher accuracy is 
achieved within a band-width less than 2.0. 

As we have discussed in Section 2, the pair of linearly independent solutions (k(z), 
B(z)) become indistinguishable numerically for large 1 z 1 in the sector n/3 < arg z < 
r, and the more appropriate pairs of solutions are {Ai( Ai(z e-““i/3)} for z in the 
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TABLE V 

Number of Terms in Quadrature Formulas to Compute Airy Functions 
to Double Precision (IBM 360) 

arg z 

2n 
< -- 

3 
27r 

<- 
3 

n 
<-- 3 

Aijzj 

4 term 

6 term 

6 term 

Bijz) 

4 term 

6 term 

power series 

u These are approximate values. For the precise boundary see Fig. 5. 

TABLE VI 

&term Generalized Gaussian Integration for Airy Functions 

1. 7.1620871339075440 4.9954496303045166(-08) 

2. 4.2311006706187214 1.8066384626280827(-05) 

3. 2.3361772245064852 9.5530673977919037(-04) 

4. 1.085643 1202004936 1.5715675321710695(-02) 
* 3. 3.3391648924379639(-Olj 1,1588902608004444( -01) 

6. 1.3115888501576988(-02) 8.674218;‘SSl934309(--01) 

upper-half plane and {Am, A~(z @ii :3 )> in the lower-half plane. Using the conjugacy 
property (2.5), Ai(z eti?ri/3) can be evaluated directly from the algorithm for ,4(z) 
described above. The single precision aIgorithm for the pair (iii{-?), A!(z e-ZCs’s)i is 
summarized in Fig. 6 where the label A- denotes Ai (Z e-aaija). 

The function values have been tested against existing tables [9> 171,: the double 
precision power series where reasonable, and the standard asymptotic expansions [Ii. 
In Table VII values computed from the single-precision qadrature (or connection) 
formulas for z along the semicircle r = 6 are compared to the double precision power 
series values. The order of magnitude of the relative error (the maximum of the relative 
errors in the real and imaginary parts) is written in brackets beside the single precision 
values. As a further check on the algorithm the Wronskian W[Ai(z), Ai(z e-2m(!sjJ = 
.g-Le”“!6 9 was computed throughout the complex plane. I3eviation.s from its constant 
value indicate rapidly au error or inappropriate selection of a pair of solutions. 
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COMPLEX AIRY FUNCTIONS 
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FIG. 6. Single Precision algorithm for {Ai( Ai(ze-sn*/3)}. 
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